TED	(15)	-4042

(015)	-20	(REVISION
	~ ((Italian in the state of it

Reg. No	
Sionatur	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

LINEAR INTEGRATED CIRCUITS

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- Answer all questions in one or two sentences. Each question carries a marks.
 - 1. Define input offset voltage of an op-amp.
 - 2. Draw the circuit diagram of a peak detector using op-amp
 - 3. Write the applications of Schmitt trigger circuit.
 - Write the expression for time period of astable and monostable circuits using IC 555.
 - 5. What is the function of a voltage regulator?

 $(5 \times 2 = 10)$

PART - B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Derive the expression for voltage gain of an inverting amplifier using op-amp.
 - Explain the working of an op-amp differentiator with the help of circuit diagram and waveform.
 - 3. Draw and explain the first order low pass filter using op-amp.
 - 4. Define capture range, lock-in range and pull-in time of PLL.
 - 5. Draw the pin diagram of 555 timer and explain the function of each pin.
 - 6. Explain the working principle of opto-coupler.
 - 7. List the advantages and disadvantages of SMPS.

 $(5 \times 6 = 30)$

[78]

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		Unit — I	
III	(a)	Draw and explain the block diagram of general purpose operational amplifier.	8
	(b)	Draw the circuit diagram of an op-amp voltage follower and explain its working.	7
		OR	
IV	(a)	Draw the circuit diagram of a non-inverting amplifier using op-amp and derive the expression for voltage gain.	8
	(b)	Explain the package types available for op-amp.	7
		Unit — II	
V	(a)	Draw and explain the astable multivibrator circuit using op-amp	8
	(b)	Draw and explain the working of inverting summing amplifier using op-amp.	7
		OR OR	
VI	(a)	Draw the circuit diagram of RC phase shift oscillator using op-amp and explain its working.	8
	(b)	Draw and explain the circuit diagram of current to voltage converter using op-amp.	7
		Unit — III	
VII	(a)	With the help of a block diagram explain the working of a phase locked loop.	8
	(b)	With the help of a directit diagram explain how a phase locked loop can be used as FM demodulator.	7
		OR	
VIII	(a)	Draw the circuit diagram and explain the working of an astable multivibrator using 555 IC.	8
	(b)	Draw the pin configuration of NE566 VCO and explain the function of each pin.	7
		Unit — IV	
IX	(a)	Draw and explain the functional block diagram of LM 723 voltage regulator.	8
	(b)	Explain the operation of adjustable voltage regulator LM 317.	7
		OR	
X	(a)	Construct a \pm 9V dual voltage supply using suitable 78XX/79XX series regulator ICs. Explain the working of the circuit.	8
	(b)	Draw and explain the basic low voltage regulator circuit using LM 723.	7

TED (15) -	- 4041
(DEVICTON)	2015

Reg.	No
Sions	iture

(REVISION — 2015)

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

ELECTRONICS INSTRUMENTS & MEASUREMENTS

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks
 - 1. Define the term 'accuracy' for an electronic instrument.
 - 2. What is the difference between active and passive transducer?
 - 3. What is a logic analyser?
 - 4. List any two types of DAS.
 - 5. What is a dual trace CRO?

 $(5 \times 2 = 10)$

PART - F

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - With the support of neat diagram, explain how one can convert a basic Galvanometer into a multi range ammeter.
 - 2. List the applications of CRO.
 - Explain the method of finding the value of an unknown inductance using 'ac bridge method'.
 - 4. With a neat diagram, explain the operation of X-Y recorders.
 - 5. Explain the theory of a hall effect sensor with necessary diagram.
 - 6. Differentiate 31/2 and 41/2 digit displays in terms of accuracy.
 - 7. What is telemetry? Describe the role of telemetry in instrumentation system. $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		UNII — I	
III	(a)	How does a digital multimeter measure fundamental electrical quantities? Explain with the help of a block diagram.	9
	(b)	Compare moving coil and moving iron instruments. OR	6
IV	(a)	Explain the operation of digital frequency meter with a neat diagram. Also explain a method for extending its range.	9
	(b)	Explain how resistances are measured by an analog multimeter.	6
		Unit — II	
V	(a)	Explain the working of a DSO with the help of a neat block diagram.	9
	(b)	What is thermocouple? Explain its principle.	6
		OR OR	
VI	(a)	Draw the internal structure of a Cathode Ray Tibe and explain its Constructional details.	9
	(b)	How is a thermistor used for accurate measurement of temperature ?	6
		UNIX — III	
VII	(a)	Draw the block diagram of logic analyser. Explain why logic state analyser is better suited for designing digital system than oscilloscopes.	9
	(b)	List the applications of Spectrum analyser.	6
		OR	
VIII	(a)	Derive the mathematical expression for finding an unknown inductance,	
		using Hay's bridge.	9
	(b)	Describe the principle of measuring frequency using Wien bridge.	6
		Unit — IV	
IX	(a)	How does a strip chart recorder record the measured variable? Explain with	
		the support of a neat diagram.	9
	(b)	How does a closed loop control system differ from an open loop control system ?	. 6
		OR	
X	(a)	Draw the block diagram and explain the operation of a Digital Data Acquisition System.	10
	(b)		5