TED (15)	- 3043
(REVISION	— 2015)

Reg. No.		
Signature		

ELECTRICAL TECHNOLOGY

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define impedance.
 - 2. Write the primary emf equation of a single phase transformer.
 - 3. What are the different types of D C motor
 - 4. Write any 2 applications of stepper motor.
 - 5. State superposition Theorem

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any hear the following questions. Each question carries 6 marks.
 - 1. Explain the working of Megger.
 - 2. State and explain Kirchhoff's Laws.
 - 3. Derive the emf equation of transformer.
 - 4. Explain the armature reaction and it's effects.
 - 5. Explain the working principle of stepper motor.
 - 6. Draw and explain the DC servo motor.
 - 7. Define the terms cycle, time period, frequency, amplitude.

 $(5 \times 6 = 30)$

[P.T.O.

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		UNII — I	
III	(a)	Describe effect of AC through a RLC circuit.	8
	(b)	An inductor coil of 0.2H with a resistance of 20Ω and a capacitance of $160~\mu F$ are connected in series and fed by a 230V, 50Hz supply. Find impedance, pf, active power and reactive power.	7
		OR	
IV	(a)	A resistance of 10Ω , an inductance of 20mH and a capacitance of $47\mu F$ are connected in series 220V, 50Hz supply. Determine (i) the voltage across R, L and C (ii) power in watts.	7
150	(b)	Explain the plate earthing method with neat sketch.	8
		Unit — II	
V	(a)	State and prove Thevenin's Theorem.	7
	(b)	Explain the construction of a transformer.	8
	(-)	OR	
VI	(a)	Illustrate the elementary theory of an ideal transformer.	7
	(b)	State and prove maximum power transfer theorem.	8
		Unit — III	
VII	(a)	Explain the working principle of DC generator.	8
	(b)	Explain the necessity of starter in a DC motor and working of a 3 point starter.	7
		OR	
VIII	(a)	Derive emf equation of a DC generator.	7
,	(b)	Draw the electrical and mechanical characteristics of a DC series motor and explain it.	8
		Unit — IV	
IX	(a)	What is the relation between the speed and frequency of an alternator ?	7
	(b)	With the help of relevant figures explain how a single phase induction motor is made self starting.	8
		OR	
X	(a)	What is the principle of operation of a 3Φ Induction motor.	7
	(4)	Explain the weaking principle of an alternator	Q

TED	(15) -	3042
(REVI	SION-	-2015)

Reg. 3	No
Signat	ure

DIGITAL ELECTRONICS

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Give the I's and 2's complements of 1101 1100.
 - 2. Give the symbol and truth table of an XOR gate.
 - 3. Define the term fan-in of a gate.
 - 4 What do you mean by a sequential togic circuit ?
 - 5. List the different types of ADC

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. What are the advantages and disadvantages of K-map?
 - 2. Explain a half subtractor circuit with truth table and logic diagram.
 - 3. Draw and explain a serial in parallel out shift register.
 - 4. Explain the working of a Johnson counter with diagram.
 - 5. What is 'modulus' of a counter? Give the truth table of a mod-8 counter.
 - 6. Explain the operation of a 1 to 4 De-multiplexer.
 - 7. Explain a flash type ADC.

 $(5 \times 6 = 30)$

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

Ш	(a)	Perform the following operations.	
		(i) 1000 × 1001	
		(ii) 110111 + 11010	
		(iii) 1101101 ÷ 101	
		(iv) (+15) + (-9) using 2's complement method.	12
	(b)	What are universal gates ? Give examples.	3
		OR OR	
IV	(a)	Simplify the Boolean function using K-map.	
		$F = \sum m (0, 3, 7, 10, 14) + d(2, 4, 6, 9, 11, 13)$	9
	(b)	State and explain De-Morgan's theorems.	6
		Unit — II	
V	(a)	Explain the working of a 3 bit encoder with arch takle and logic diagram.	9
	(b)	Define the terms Noise margin, Noise imaginary and propagation delay.	6
VI	(a)	Design a ful1 adder circuit.	9
	(b)	Draw and explain a TTL inverter	6
		UNIT — III	
VII	(a)	Explain the working of master slave JK flip-flop with diagram.	10
	(b)		. 5
		OR	
/III	(a)	Explain the different types of shift registers with diagrams.	10
	(b)	What is race around condition? How it can be eliminated?	5
		Unit — IV	
IX	(a)	Implement a mod-10 asynchronous counter using JK flip-flops.	10
	(b)	Define resolution and accuracy of a DAC.	5
		OR	
X	(a)	Explain the working of R-2R ladder type DAC with diagram.	10
21		Differentiate between asynchronous and synchronous counters.	5
	(b)	Differentiate between asynchronous and synchronous counters.)

TED	(15) -	- 3044
(REVI	SION -	- 2015)

Reg. No.	
Signature	

ELECTRONIC DEVICES AND CIRCUITS

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- Answer all questions in one or two sentences. Each question carries 2 marks
 - 1. State the need of multistage amplifier.
 - 2. Define Q factor.
 - 3. Define the term cross over distortion in power amplifier.
 - 4. Define pinch off voltage of a FET
 - 5. List the merits of crystal oscillator.

 $(5 \times 2 = 10)$

PART - B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain ac and dc load line with graph.
 - 2. List the advantage and disadvantage of direct coupled amplifier.
 - A parallel tuned circuit is resonant at 455 KHz and has 20KHz band width and XL = 1500Kohm. Find Q factor.
 - 4. List the advantage of negative feedback.
 - 5. Explain the working of Unijunction transistor.
 - Prove that the output of RC differentiator circuit is proportional to the derivative of the input.
 - 7. Explain the principle of L C oscillator.

 $(5 \times 6 = 30)$

[37]

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

III	(a)	Draw and explain the emitter follower and its application.	8
	(b)	Distinguish between different coupling schemes used in multistage amplifiers.	7
		OR	
IV	(a)	Draw the frequency response of Common Emitter RC coupled amplifier and explain why bandwidth decreases at low frequencies and high frequencies.	10
	(b)	List the application of transformer coupled amplifier.	5
		Unit — II	
V	(a)	Explain the classification of power amplifier with transfer characteristics curve.	8
	(b)	Compare between series and parallel resonance circuit.	7
		OR	
VI	(a)	Draw and Explain the operation of complementary symmetry push pull power amplifier.	9
	(b)	Why heat sinks are necessary to use with power transistors.	6
		UNY — III	
VII	(a)	Describe construction of N-Channel deflection type MOSFET.	8
	(b)	Distinguish the properties of positive and negative feedback circuits.	7
		OR	
/III	(a)	What are parameters of FET ? Explain.	7
	(b)	Distinguish between JFET and MOSFET.	8
		Unit — IV	
IX	(a)	Draw and explain the working of Astable Multivibrator with waveforms.	7
	(b)	Draw and explain the working of wein bridge oscillator.	8
		OR	
X	(a)	Draw and explain working of collipts oscillator.	7
	(b)	Explain the working of crystal oscillator, with neat circuit diagram.	- 8

TED	(15)		3041
(REVI	SION	_	2015)

Reg. No.		

COMMUNICATION ENGINEERING

[Time: 3 hours

(Maximum marks: 100)

PART - A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question extres 2 marks.
 - 1. Explain phase modulation.
 - 2. Define Skip Distance.
 - 3. Explain Critical Frequency.
 - 4. Define signal to noise ratio.
 - 5. Define Selectivity.

 $(5 \times 2 = 10)$

PART - B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain Space wave propagation.
 - 2. Explain Pulse amplitude modulation.
 - 3. Describe simple AGC with circuit diagram.
 - 4. Explain the need of Limiter circuit in FM.
 - 5. Describe the Need for modulation.
 - 6. Explain Refraction and Diffraction.
 - 7. Explain AFC with block diagram.

 $(5 \times 6 = 30)$

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

Ш	(a)	Explain Ground wave propagation.	8
	(b)	Explain the working of parabolic Antenna.	7
		OR	
IV	(a)	Draw different layers of ionosphere and explain it.	9
	(b)	Explain Folded dipole antenna.	6
		Unit — II	
V	(a)	Derive the expression for modulating index in AM.	. 6
	(b)	Explain the working of balanced modulator with circuit.	9
		Or C	
VI	(a)	Derive the expression for an AM wave.	7
	(b)	Explain pulse code modulation Technique	8
		Upri III	
VII	(a)	Draw the block diagram of Direct FM transmitter and explain the function	
	23	of each block.	9
	(b)	Explain De-emphasis and Pre-emphasis with necessary diagrams.	6
3.7TTT	(-)	OR	
VIII	(a)	Explain the working of AM transmitter with block diagram.	9
	(b)	Explain types of internal noise.	6
		Unit — IV	
IX	(a)	Explain the factors influencing the Choice of IF.	6
	(b)	Explain the working of Super heterodyne receiver with block diagram.	9
		OR	
X	(a)	Explain the working of diode detector with circuit diagram.	6
	(b)	Explain FM receiver with Block diagram.	9